Generalised operations in free harmonic analysis

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Tori and Generalised Jacobi Varieties

Over the last decade there has been considerable success in understanding the construction of certain harmonic 2-tori in symmetric spaces (in particular, the non-superminimal tori in CP and S) using the methods of integrable systems theory. For example, if φ : M → S is a non-conformal harmonic torus one knows that φ has a corresponding spectral curve X, which is a real hyperelliptic curve equip...

متن کامل

on the harmonic index of graph operations

‎the harmonic index of a connected graph $g$‎, ‎denoted by $h(g)$‎, ‎is‎ ‎defined as $h(g)=sum_{uvin e(g)}frac{2}{d_u+d_v}$‎ ‎where $d_v$ is the degree of a vertex $v$ in g‎. ‎in this paper‎, ‎expressions for the harary indices of the‎ ‎join‎, ‎corona product‎, ‎cartesian product‎, ‎composition and symmetric difference of graphs are‎ ‎derived‎.

متن کامل

Grouping Operations in Free RecallZ

In free recall, Ss search for stable groupings of the list words, which groups become functional recall units. The experiments reported show that recall suffers if S is forced to adopt groupings differing from those used previously. Although such regroupings disrupt retrieval processes in recall, they do not reduce recognition memory for the list words, presumably because recognition depends on...

متن کامل

Generalised Composition Operations for High-level Petri Nets

We propose generic schemes for basic composition operations (sequential composition , choice, iteration, and reenement) for high-level Petri nets. They tolerate liberal combinations of place types (equal, disjoint, intersecting) and, owing to a parameterised scheme of type construction, allow for weak and strong versions of compositions. Properties such as associativity, commutativity, and cohe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Semigroup Forum

سال: 2019

ISSN: 0037-1912,1432-2137

DOI: 10.1007/s00233-019-10001-8